If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-7y-7=0
a = 1; b = -7; c = -7;
Δ = b2-4ac
Δ = -72-4·1·(-7)
Δ = 77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{77}}{2*1}=\frac{7-\sqrt{77}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{77}}{2*1}=\frac{7+\sqrt{77}}{2} $
| 2*x=0.1 | | .2x+x=20.4 | | 4(p-9)=-6 | | 1*x=0.1 | | 1*x=0*1 | | 180=x+(x-4)+2x | | 3^4x-6*3^2x-27=0 | | 4(s+6)=0-4(5s-6)+23s | | 5x+34=-2(-7x-1) | | n2–11n+24=0 | | −1.6(2y+15)=−1.2(2y−10) | | C(y)=0.75y+9 | | (X^2)+(4-x)^2=28 | | 1/2(4x-7)+3x=36 | | 6(s+2)=0-6(5s-2)+35s | | 3d²+23d+14=0 | | -490x^2+1470x-980=0 | | p2–8p=0 | | 40/x+16=48/2 | | 3x+.75x=99 | | q2+33q=0 | | 9+4=5x | | q2+16q=0 | | 1.3+x=2.6 | | d2+24d=0 | | X^2-34x-946=0 | | 21/2•c=10 | | (5x+2)/3=9 | | 6.4.x-4=5.4x | | 4x/x-8-2x/x-8=x/8 | | (8x+6)=(3x+5) | | 2x-16=x+40=x |